IP Addresses

IP Address Allocation

IANA allocates blocks of IP addresses to regional Internet registries (RIRs).

The 5 RIRs are informally liaised through an independent non-profit *Number Resource Organization (NRO)*

Regional Internet Registries

Regional Internet Registries

RIR IPv4 Allocation Rates

RIRs were allocating IPs at tremendous rate — especially in Asia

IPv4 Allocations

IANA ran out out unallocated IP blocks in January 2011

RIRs ran out soon after:

APNIC — April 2011

LACNIC — June 2014

ARIN — Sept 2015

AFRINIC — April 2017

RIPE — Nov 2019

Reclaiming Unused IPv4 Address Space

Some organizations have returned unused address space

- Stanford returned 36.0.0.0/8 and kept only 5 x /16s by 2000
- MIT sold half of 18.0.0.0/8 to Amazon in 2017. Had only ever used 2 of the 16 million IPs they owned
- ? How much of IPv4 is advertised? You can check your routing table.

IPv6 Addresses

IPv4 -> IPv6

	IPv4	IPv6		
Address Size	32-bit	128-bit		
Header Size	20 bytes	40 bytes		
Header Fields	12 fields	8 fields		
Checksum	IP + TCP, Sometimes UDP	TCP + UDP		
Flow Labeling		Flow ID		
Fragmentation	Host + Router	Host Only		
Host Addressing	DHCP, ARP, IRDP	SLAC, ICMP, DHCPv6		
Broadcast	Yes!	No!		

IPv6 Header

IPv4 Header

Version	Traffic Class	Flow L	.abel	Version	IHL	Type of Service	Tot	al Length
Paylo	ad Length	Next Header	Hop Limit	Identification		Flags	Fragment Offset	
Source Address			TTL Protocol		Header Checksum			
			Source Address					
			Destination Address					
			Options				Padding	
Destination Address			Fie cha	elds k elds k elds k elds k elds n		Pv6	and position	

IPv6 Addressing

IPv6 Address Representation

- 128 bits in length and written as a string of hexadecimal values
- In IPv6, 4 bits represents a single hexadecimal digit, 32 hexadecimal value = IPv6 address

2001:0DB8:0000:1111:0000:0000:0000:0200

FE80:0000:0000:0000:0123:4567:89AB:CDEF

- Hextet used to refer to a segment of 16 bits or four hexadecimals
- Can be written in either lowercase or uppercase

IPv6 Addressing

IPv6 Address Representation (cont.)

Rule 2 - Omitting All 0 Segments

- A double colon (::) can replace any single, contiguous string of one or more 16-bit segments (hextets) consisting of all 0's.
- Double colon (::) can only be used once within an address otherwise the address will be ambiguous.
- Known as the compressed format.
- Incorrect address 2001:0DB8::ABCD::1234.

resentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

Rule 1- Omitting Leading 0s

- The first rule to help reduce the notation of IPv6 addresses is any leading 0s (zeros) in any 16-bit section or hextet can be omitted.
- 01AB can be represented as 1AB.
- 09F0 can be represented as 9F0.
- 0A00 can be represented as A00.
- 00AB can be represented as AB.

Preferred	2001:0DB8:000A:1000:0000:0000:0000:0100					
No leading 05	2001: DB8: A:1000: 0: 0: 100					
Compressed	2001:DB8:A:1000:0:0:100					

esentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

Rule 2 - Omitting All 0 Segments (cont.)

Example #1

Example #2

Preferred	FE80:0000:0000:0000:0123:4567:89AB:CDEF					
Omit leading 0s	FE80: 0: 0: 123:4567:89AB:CDEF					
Compressed	FE80::123:4567:89AB:CDEF					

128 Bit Addresses

128 Bit Addresses

Interfaces have Multiple IPs

```
48: vlan50@bridge: <BROADCAST,MULTICAST,UP,LOWER_UP link/ether a8:1e:84:ce:64:5f brd ff:ff:ff:ff:ff inet 171.67.70.1/23 scope global vlan50 valid_lft forever preferred_lft forever inet6 2607:f6d0:ec50:100::1/56 scope global valid_lft forever preferred_lft forever inet6 fe80::aa1e:84ff:fece:645f/64 scope link valid_lft forever preferred_lft forever
```

IPv6 Usage

Google Observed Users

Higher Weekend Usage

IPv6 Adoption

We are continuously measuring the availability of IPv6 connectivity among Google users. The graph shows the percentage of users that access Google over IPv6.

Geographic Biases

John SHD001 CX AX

Alexa Rank	Website	AAAA Record	AAAA Record for www. Site	Site returns IPv6 source address	www. Site returns IPv6 source address
1	Google.com	✓	✓	✓	✓
2	YouTube.com	✓	✓	✓	✓
3	Facebook.com	✓	✓	✓	✓
4	Baidu.com	x	х	-	-
5	Wikipedia.org	✓	✓	√ *	√ *
6	Qq.com	x	✓	-	√ *
7	Tmall.com	x	x	_	-
8	Taobao.com	х	x	_	-
9	Yahoo.com	✓	✓	✓	✓
10	Amazon.com	X	X	-	-
11	Twitter.com	x	x	-	-
12	Sohu.com	X	X	-	-
13	Instagram.com	✓	✓	✓	✓
14	Reddit.com	х	x	-	-
15	Jd.com	X	x	-	-

Lots of Traffic! = Lots of Deployment

