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More than 300 studies have used Internet-wide scanning
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No study has analyzed the entire
IPv4 service space
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The IPv4 service search-space iIs too large

» Scanning all 65K ports across all 3.7 billion public IPv4 addresses takes 5.6
years using ZMap at 1 Gb/s
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The IPv4 service search-space iIs too large

» Scanning all 65K ports across all 3.7 billion public IPv4 addresses takes 5.6
years using ZMap at 1 Gb/s

Solution:

o Studies often only scan assumed-relevant ports (e.g., 23/Telnet, 2323/Telnet)

* Service search engines only scan the most populated ports
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Researchers are missing billions
of IPv4 services
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L. Izhikevich, R. Teixeira, and Z. Durumeric. LZR: Identifying unexpected Internet
services. In USENIX Security Symposium, 2021.

Recent work has shown...

 Majority of services do not run on assigned ports
e 97% of HTTP services do not occupy port 80

* Scanning the top 5K ports misses an estimated 1.9 billion (63%) of all
Services
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L. Izhikevich, R. Teixeira, and Z. Durumeric. LZR: Identifying unexpected Internet
services. In USENIX Security Symposium, 2021.

Recent work has shown...

 Majority of services do not run on assigned ports
e 97% of HTTP services do not occupy port 80

* Scanning the top 5K ports misses an estimated 1.9 billion (63%) of all
Services

e Services on non-standard ports are not accurately represented by those on
standard ports

* |oT and vulnerable devices are up to 5 times more likely to inhabit non-
standard ports
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How does one efficiently find
responsive services across all ports?
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Service location is predictable

* Port usage Is correlated

~50% of SMTP/465 servers also ~80% of HTTP/443 also
respond on IMAP/143 respond on HTTP/80
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Service location is predictable

* Port usage Is correlated

* for every port, at least 25% of hosts responding on port A also respond
on the same port B
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Service location is predictable

» Different populations of hosts are more likely to run specific services

* Fingerprinting the host-type can predict open ports
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Huawei routers often serve Android Things OS often serves
80/TLS and 7547/CWMP 8443/TLS and 8008/HTTP
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Service location is predictable

* |nternet services are more likely to appear together in networks

Freeboxes only appear in
networks owned by Free
(ASN 12332)
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Service location is predictable

* The following categories of features predict service presence:
* transport layer (port correlations)
» application layer (device fingerprinting)

* network layer (hetwork fingerprinting)
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Prior work reduces the cost of scanning by predicting responsive services

e (Classifiers

e [arget generation algorithm
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Prior work reduces the cost of scanning by predicting responsive services

e Sarabi et al. (classifier):

* For a list of IP addresses, train an XGBoost classifier to classify what
ports a given IP address will respond on

* Use transport, network, application layer features

Fi(X) By (X) l Fp(X)

Tree 1 ree 2

A. Sarabi, K. Jin, and M. Liu. Smart Internet Probing: Scanning Using Adaptive
Machine Learning. 2021.

Image from https://docs.aws.amazon.com/sagemaker/latest/dg/xgboost-HowltWorks.html 16 Stanford University



Prior work reduces the cost of scanning by predicting responsive services

 Murdock et al., Foremski et al., Gasser et al., (target generation algorithms):

 For each individual port, train a bayesian model to predict the structure of

likely-responsive IP addresses

Only use network layer features
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A. Murdock, F. Li, P. Bramsen, Z. Durumeric, and V. Paxson. Target generation
for Internet-wide IPv6 scanning. In ACM Internet Measurement Conference, 2017.

P. Foremski, D. Plonka, and A. Berger. Entropy/IP: Uncovering structure in IPv6
addresses. In ACM Internet Measurement Conference, 2016.

O. Gasser, Q. Scheitle, P. Foremski, Q. Lone, M. Korczynski, S. D. Strowes, L. Hen-
driks, and G. Carle. Clusters in the expanse: Understanding and unbiasing IPv6
hitlists. In ACM Internet Measurement Conference, 2018.
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Existing solutions do not scale across all 65K ports

« XGBoost scanner need to be sequentially trained per port (~53 days of
training)

« XGBoost scanner needs 10 million training IPs per port...which only 0.01%
of ports have

 TGAs need 1,000 training IPs per port...would require one year to collect
across all 65K ports using ZMap at 1Gb/s
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Predicting services across all ports must...

e Train/predict in a minimum computational wall-time...because services
churn quickly:.

* Rely on a set of services that take minimum wall-time to scan/collect (i.e.,
minimum training data)
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GPS: The first scalable and wall-time
efficient solution for predicting IPv4
services across all ports
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GPS Algorithm Overview

1. Collect a seed set (i.e., an IPv4 sample across all ports) to learn from

2. Construct a probabilistic model for service prediction

3. Use the model to predict at least one service across all likely-responsive
IPv4 hosts

4. Use the model and the first found service to predict all remaining services
on responsive |IPv4 hosts
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1. Collecting a seed set

 GPS starts with zero knowledge about Internet host -> must learn service
patterns using the seed set

 The seed set consists of IPv4 services across all 65K ports
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1. Collecting a seed set

 GPS starts with zero knowledge about Internet host -> must learn service
patterns using the seed set

 The seed set consists of IPv4 services across all 65K ports
* The bigger the seed set, the better the predictions

 GPS can successfully predict services with just two IP samples per port
(orders of magnitude smaller than prior work) across all ports
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Application-Layer or

2. ldentifying predictive patterns ==t

Protocol

TLS Cert: Hash

TLS Cert: Organization
TLS Cert: Subject Name
HTTP: HTML title
HTTP: Body Hash

* GPS models the interactions of the following HTTP: Server

. HTTP: Header
featu res. SSH: Host Key

SSH: Banner
. - VNC: Desktop Name
transport layer -> ports et
FTP: Banner
. . . . IMAP: Banner
application layer POP3; Banner
CWMP: Header
* network layer Sl den

Telnet: Banner

PPTP: Vendor

MYSQL: Server Version
Memcached: Server Version
MSSQL: Server Version
IPMI: Banner

IP’s /16 subnetwork
I[P’s ASN
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2. ldentifying predictive patterns

 GPS uses simple conditional probabilities to find the most predictive feature
values

]P(PO rt, ‘ Po "tb) Transport layer correspondence
IP(Portg|(Porty, Appport,)) Transport and application layer correspondence
IP(Portg|(Porty, Netip)) Transport and layer correspondence

IP(Portg|(Porty, Appport,, Netrp))  Transport and layer correspondence
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2. ldentifying predictive patterns

 Why use conditional probabilities?
(+) Simple, parallelizable calculations across all 65K ports

(+) Accurate

(+) Require minimal “training” data
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2. ldentifying predictive patterns

 Why use conditional probabilities?

(+) Simple, parallelizable calculations across all 65K ports

(+) Accurate T \
Faster and more

(+) Require minimal “training” data accurate than the
XGBoost scanner
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2. ldentifying predictive patterns

 Why use conditional probabilities?
(+) Simple, parallelizable calculations across all 65K ports

(+) Accurate

(+) Require minimal “training” data

(-) Computationally expensive to brute force calculate the probability of all
possible combinations of features
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Problem: how does GPS obtain a priori information about a host?

IP(Portg|Porty)

|

?

* The seed set only covers a small sub-set of hosts
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Problem: how does GPS obtain a priori information about a host?

IP(Portg|Porty)

|

?

* The seed set only covers a small sub-set of hosts

* Without the model, collecting initial information about hosts is expensive as
only network layer features are available
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Problem: how does GPS obtain a priori information about a host?

IP(Portg|Porty)

|

?

* The seed set only covers a small sub-set of hosts

* Without the model, collecting initial information about hosts is expensive as
only network layer features are available

e Solution: collect a minimum amount of most predictive information about
every likely-responsive host
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3. Use the model to predict at least one service across all likely-responsive
IPv4 hosts

6@443 /HTTP Observed Jul 10,2022 at 11:07am UTC 80 /HTTP

https://1.6.85.41:60443 http://1.6.85.41

Leaf Certificate

e3574c93a0f7e73e4778df9bb4e329c0b9dab6B8e34c5e9ad46303876b5a6ead49
SN=Califomia, CN=7c:ad:74:18:66:48, OU=RV042, O=Cisco Systems\, Inc., L=Irvine, C=US, SN=Califomia
SN=Califomia, CN=7c:ad:74:18:66:48, 0U=RV042, O=Cisco Systems), Inc., L=Irvine, C=US, SN=Califomia ol l I l I

cisco Router

P(Port 80| Port 60443) = 71%
P(Port 60443 | Port 80) = 0.2%

Port 60443’s service is more predictive of port 80’s service
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3. Use the model to predict at least one service across all likely-responsive
IPv4 hosts

Algorithm:

1. For all hosts that respond on only one port in the seed
set, save the service’s (Port #, Network_IP )

2. For all hosts that respond on more than one port in the /” Priors Scan List
seed set
> 80,1.1.0.0/16
a. compute all four probabilistic models (e.g., 123, 17.167.0.0/16
P( Port_a, Port_b ) ) using all of the service’s features 222,1.2.0.0/16
b. Identify the Port_b that results in the maximum \_ )

P(Port_a) and save the (Port #, Network_IP )

[~

N

See the paper for how to
determine an IP’s network
(e.g., ASN, /16, etc)

. J
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3. Use the model to predict at least one service across all likely-responsive

IPv4 hosts

Predictive
Model

ﬂ’riors Scan Lisﬁ

80,1.1.0.0/16
123,17.167.0.0/16
222,1.2.0.0/16

Scan

N

34
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At least one service across all

likely-responsive IPv4 hosts

Stanford University



4. Use the model and first found service to predict all remaining services on
responsive IPv4 hosts

K \ K Priors Scarﬁ

Priors Scan List Result
Scan  |60443,1.6.85.41

Predictive
Model > | 60443,1.6.0.0/16 » 160443,1.6.85.42
K Predictions\

60443,1.6.85.43
List

80,1.6.85.41
\_ J \_ J 80.1.6.85.42

80,1.6.85.43

K Predictive Features List \
_ J

P(port 80 | port 60443) = 71%
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GPS Algorithm

1. Collect a seed set (i.e., an IPv4 sample across all ports) to learn from

2. Construct a probabilistic model for service prediction

3. Use the model to predict at least one service across all likely-responsive
IPv4 hosts

4. Use the model and the first found service to predict all remaining services
on responsive |IPv4 hosts

36 Stanford University



GPS Algorithm

1. Collect a seed set (i.e., an IPv4 sample across all ports) to learn from

2. Construct a probabilistic model for service prediction

~

_J

3

Computationally and
memory expensive, but
parallelizable

3. Use the model to predict at least one service across all likely-responsive

IPv4 hosts

4. Use the model and the first found service to predict all remaining services

on responsive |IPv4 hosts

37
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Implementing GPS with serverless compute

» Serverless computing provides an elastic and parallelizable computational
environment -> minimize wall-clock time

 Google BigQuery, a serverless database platform, enables scalable analysis
over petabytes of data

* Implementing GPS in a database query language makes reading, aggregating,
and joining among shared fields intuitive

ZN
More details in the paper and at

Insert google big query
https://github.com/stanford-esrg/gps image
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GPS’

imp

lementation with serverless compute

6.

=i e
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- Predict
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39
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Internet | 8. T
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Let’s evaluate GPS
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GPS metrics for success

» GPS’ objective is to maximize finding services across all ports

N
: . 7 (IP, p) Found by System Biased towards services that live on
Fraction of Services =

#(IP, p) in Ground Truth popular ports

(5% of services across all 65K ports
live on only 10 ports)

- J
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GPS metrics for success

» GPS’ objective is to maximize finding services across all ports

#IP, Found by System

#(IP, p) Found by System Lipep #IP, in Ground Truth

. Normalized Services =
#(IP, p) in Ground Truth 1P|

Fraction of Services =

max Normalized Services(bandwidth)

bandwidth < ¢4
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Evaluating against a ground truth

 No method exists to efficiently scan 100% of IPv4 across all 65K ports
* We approximate ground truth using two datasets:
 Censys 100% IPv4 scan across the most popular 2K ports

e | /R 1% IPv4 scan across all 65K ports
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Evaluating against a ground truth

 No method exists to efficiently scan 100% of IPv4 across all 65K ports

* We approximate ground truth using two datasets:

- ™
. \Censys 100% IPv4 scan across the most popular 2K ports }

e | /R 1% IPv4 scan across all 65K ports
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Creating a tighter benchmark for GPS

 No method exists to efficiently scan 100% of IPv4 across all 65K ports

* Evaluate against “exhaustive, optimal port-order probing”: exhaustively
scanning the minimum number of ports to find the maximum fraction of

services

Fraction of all

Fraction of

Ports . . .
services normalized services
80 1/65K
80, 443 2/65K
80, 443, 7457 3/65K

45
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GPS finds 94% of all services using 21x less bandwidth than optimal port-order
probing

Time (H)
(1 Gb/s Bandwidth)
0 10 20 30 40 50 60 70
ml.oo 1 | l. | | ‘__—l—____-l-——__-_l‘-__-
S 0.98 .
qE) . /,,/
U 0.96 - //
© y
- 0.94 1@ // . GPS
.=, / . :
& 0.92 7 Y, - == exhaustive, optimal order
L oracle
.
0.00 = 1 | I | |
0 200 400 . 600 800 1000
Bandwidth

(# of 100% Scans)
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GPS finds 46°% of normalized services using 100x less bandwidth than optimal
port-order probing and 67% of normalized services using 50% less bandwidth

Time (H)

(1 Gb/s Bandwidth)
§ 0 20 40 60 80 100 120 140 160
-E 1.0 1 1 1 1 | 1 1 1 ,/’ 1
) PR
V) /,’
© 08- e 7
g -
5 : s
g o . e GPS
Z 04y ’ -~ === exhaustive, optimal order
= 0.
O /( 0 oracle
.Ig 0.0 i l{, | | | 1 1 1 1 |
= 0 250 500 750 _ 1000 1250 1500 1750 2000

Bandwidth
(# of 100% Scans)
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GPS finds 94% of all services and 46% of normalized services while being over
10x more precise than exhaustive probing

— GPS (normalized)
0.4 - GPS (all)
- == @xhaustive
[0
® 0.2 -
al
0.1 - |
e A s

0.0 0.2 0.4 0.6 0.8 1.0
Fraction (Normalized/All) Services Found
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Evaluating against the XGBoost scanner

o Sarabi et al. train an XGBoost classifier to predict services on a target port
using two phases:

1. Use the XGBoost classifier to predict services on alternate ports that
are considered predictive for the target port

2. Use the output of the previous scan to help predict services on the
target port
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GPS saves more bandwidth than XGBoost scanner when scanning 16/19
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GPS uses 3x less bandwidth to find 98.5% of normalized services than
XGBoost scanner

Fraction of Normalized Services
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Computational Complexity - Time

* Using a single core, GPS performs predictions in 9 days and 9 hours — 5.6x
faster than XGBoost scanner

* Using serverless computing, GPS performs predictions in 13 minutes —
10000x faster than XGBoost scanner
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Computational Complexity - Time

* Using a single core, GPS performs predictions in 9 days and 9 hours — 5.6x
faster than XGBoost scanner

* Using serverless computing, GPS performs predictions in 13 minutes —
10000x faster than XGBoost scanner

» GPS’ bottleneck is bandwidth:
* Collecting the seed scan, if it is not available, can take days/months

» Data transfer to/from Google BigQuery is bottlenecked by Google’s limits
~ R

With an available seed scan, GPS takes a total of 9 hours to predict and scan all

services

\_ _J
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Computational Complexity - Space

 Required memory is dependent upon:
e Size of seed scan (e.g., filtered LZR 1% |IPv4 = 4GB)
 Number of features to extract

* The conditional probability algorithm (can create a memory footprint 50
times larger than seed scan size)
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Computational Complexity - Space

 Required memory is dependent upon:
e Size of seed scan (e.g., filtered LZR 1% |IPv4 = 4GB)
 Number of features to extract

* The conditional probability algorithm (can create a memory footprint 50
times larger than seed scan size)

* Final list of 28 billion predicted services is 547GB (~100x greater than the
initial seed scan file)
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Most predictive features

Feature Normalized Services
Services

( Port, Portp,otoco] ) 18.7% 2.0%

Port 14.1% 2.0%

( Port, PortyTTp Header ) 9.7% 2.0%

( Port, Portasn, PortHTTP-Body-Hash ¥y 11% 2.0%

( Port, PortHTTP-Body-Hash ) 6.1% 2.0%

57
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Limitations for predictive Internet scanning

* |Pv6 search space
* GPS relies on exhaustively scanning sub-networks to find the first service

 GPS can be used to predict additional services on the same IPv6
address when one Is already known
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Limitations for predictive Internet scanning

e Some patterns will never be predictive
 Random host configuration

 FRITZ!Box : “for security reasons, FRITZ!Box sets up a random TCP port
for HTTPS when internet access via HTTPS is enabled”

* Routers port-forward services through random ports
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Conclusion

 GPS is a scanning system that predicts IPv4 services across all ports and
finds billions of previously-hidden services

60 Stanford University



Conclusion

 GPS is a scanning system that predicts IPv4 services across all ports and
finds billions of previously-hidden services

* Jo predict services, GPS parallelizes conditional probability calculations
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Conclusion

 GPS is a scanning system that predicts IPv4 services across all ports and
finds billions of previously-hidden services

* Jo predict services, GPS parallelizes conditional probability calculations

 GPS finds 94% of services using 21x less bandwidth than exhaustive
scanning
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Conclusion

 GPS is a scanning system that predicts IPv4 services across all ports and
finds billions of previously-hidden services

* o predict services, GPS parallelizes conditional probability calculations

 GPS finds 94% of services using 21x less bandwidth than exhaustive
scanning

 GPS calculates all predictions in 13 minutes
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Conclusion

 GPS is a scanning system that predicts IPv4 services across all ports and
finds billions of previously-hidden services

* Jo predict services, GPS parallelizes conditional probability calculations

 GPS finds 94% of services using 21x less bandwidth than exhaustive
scanning

 GPS calculates all predictions in 13 minutes

 GPS is open source: https://github.com/stanford-esrg/gps
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Conclusion

 GPS is a scanning system that predicts IPv4 services across all ports and
finds billions of previously-hidden services

* Jo predict services, GPS parallelizes conditional probability calculations

 GPS finds 94% of services using 21x less bandwidth than exhaustive
scanning

 GPS calculates all predictions in 13 minutes

 GPS is open source: https://github.com/stanford-esrg/gps
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